Sains Malaysiana 54(8)(2025): 1973-1984

http://doi.org/10.17576/jsm-2025-5408-08

 

PM2.5-Bound Trace Metals within Vicinity of a Coal-Fired Power Plant: Source Apportionment and Health Risk Assessment

(Logam Surih Terikat PM2.5 dalam Persekitaran Loji Janakuasa Arang Batu: Pembahagian Sumber dan Penilaian Risiko Kesihatan)

 

SUFIAN ABD RAHMAN1, MUHAMMAD IKRAM A WAHAB1, NOR FADILAH RAJAB3,*, MOHD TALIB LATIF2 & MAZRURA SAHANI1

 

1Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

2Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

Diserahkan: 16 Disember 2024/Diterima: 18 Jun 2025

 

Abstract

A coal-fired power plant is an industry known for its environmental health effects due to emissions containing pollutants like PM2.5. Studies show PM2.5 contains multiple hazardous pollutants, including metals. This study was conducted in Klang, Malaysia, to assess the concentration of trace metals in PM2.5 near a coal-fired power plant, identify their sources, and evaluate human health risks. The average PM2.5 concentration was 14.42 ± 8.7 µg/m³, with maximum levels (43.15 µg/m³) exceeding the Malaysian Ambient Air Quality Standard. PM2.5 samples were collected from June to November 2018 and extracted using sonication in ultrapure water. Eighteen trace metals were analysed using ICP-MS, and the results were used for Principal Component Analysis (PCA) for source identification. PCA showed that the trace metals originated from sea salt and biomass burning (37%), coal combustion and vehicular emissions (34%), oil combustion (17%), and soil dust (12%). A health risk assessment (HRA) for selected metals indicated that carcinogenic and non-carcinogenic risks were generally within acceptable limits. However, the Hazard Quotient (HQ) for nickel exceeded the acceptable limit at one point (HQmax = 2.24). A limitation of this study is that its sampling period was confined to the southwest monsoon and intermonsoon seasons, so the findings may not be representative of the entire year. The findings highlight the importance of managing industrial emissions to improve air quality, aligning with UN Sustainable Development Goals for Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13).

Keywords: HRA; power plant; PM2.5; source apportionment

 

Abstrak

Stesen jana kuasa arang batu adalah industri yang dikenali dengan kesan terhadap kesihatan persekitaran akibat pelepasan yang mengandungi bahan pencemar seperti PM2.5. Kajian menunjukkan PM2.5 mengandungi pelbagai bahan pencemar berbahaya, termasuk logam. Kajian ini dijalankan di Klang, Malaysia, untuk menilai kepekatan logam surih dalam PM2.5 berhampiran stesen jana kuasa arang batu, mengenal pasti puncanya dan menilai risiko kesihatan manusia. Purata kepekatan PM2.5 adalah 14.42 ± 8.7 µg/m³, dengan tahap maksimum (43.15 µg/m³) melebihi Piawai Kualiti Udara Ambien Malaysia. Sampel PM2.5 dikumpulkan dari Jun hingga November 2018 dan diekstrak menggunakan kaedah sonikasi dalam air ultratulen. Lapan belas logam surih dianalisis menggunakan ICP-MS dan hasilnya digunakan untuk Analisis Komponen Utama (PCA) bagi mengenal pasti punca. PCA menunjukkan bahawa logam surih berpunca daripada garam laut dan pembakaran biojisim (37%), pembakaran arang batu dan pelepasan kenderaan (34%), pembakaran minyak (17%) dan habuk tanih (12%). Penilaian risiko kesihatan (HRA) untuk logam terpilih menunjukkan bahawa risiko karsinogenik dan bukan karsinogenik secara amnya berada dalam had yang boleh diterima. Walau bagaimanapun, Darjah Bahaya (HQ) untuk nikel melebihi had yang boleh diterima pada satu ketika (HQmaks = 2.24). Satu batasan kajian ini ialah tempoh pensampelannya terhad kepada musim monsun barat daya dan antara monsun, justeru keputusan ini mungkin tidak mewakili keseluruhan tahun. Keputusan kajian ini juga menekankan kepentingan pengurusan pelepasan industri untuk meningkatkan kualiti udara, selari dengan Matlamat Pembangunan Mampan PBB, terutamanya bagi Tenaga Mampu Milik dan Bersih (SDG 7) dan Tindakan terhadap Iklim (SDG 13).

Kata kunci: HRA; pembahagian sumber; PM2.5; stesen janakuasa

 

RUJUKAN

Agency for Toxic Substances and Disease Registry (ATSDR). 2018. Minimal Risk Levels (MRLs) – For Professionals. https://www.atsdr.cdc.gov/mrls/index.html (Accessed on 19 December 2023).

Asif, Z., Chen, Z., Wang, H. & Zhu, Y. 2022. Update on air pollution control strategies for coal-fired power plants. Clean Technologies and Environmental Policy 24: 2329-2347.

ASTM International. 2021. Standard Test Method for Determination of Elements in Airborne Particulate Matter by Inductively Coupled Plasma–Mass Spectrometry (ASTM D7439-21). West Conshohocken, PA: ASTM International.

Bernama. 2018. Forest Fires Rage in Sumatra, Raising Fears of Haze. https://www.nst.com.my/world/2018/07/392384/forest-fires-rage-sumatra-raising-fears-haze (Accessed on 15 June 2022).

Bleam, W.F. 2017. Soil and Environmental Chemistry. 2nd ed. Netherlands: Elsevier.

Chen, X., Yang, T., Wang, Z., Hao, Y., He, L. & Sun, H. 2020. Investigating the impacts of coal-fired power plants on ambient PM2.5 by a combination of a chemical transport model and receptor model. Science of The Total Environment 727: 138407.

Chio, C.P., Lo, W.C., Tsuang, B.J., Hu, C.C., Ku, K.C., Chen, Y.J., Lin, H.H. & Chan, C.C. 2019. Health impact assessment of PM2.5 from a planned coal-fired power plant in Taiwan. Journal of the Formosan Medical Association 118(11): 1494-1503.

Cropper, M., Cui, R., Guttikunda, S., Hultman, N., Jawahar, P., Park, Y., Yao, X. & Song, X.P. 2021. The mortality impacts of current and planned coal-fired power plants in India. Proceedings of the National Academy of Sciences of the United States of America 118(5): e2017936118.

Du, X., Jin, X., Zucker, N., Kennedy, R. & Urpelainen, J. 2020. Transboundary air pollution from coal-fired power generation. Journal of Environmental Management 270: 110862.

Duan, J., Tan, J., Wang, S., Hao, J. & Chai, F. 2012. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. Journal of Environmental Sciences 24(1): 87-94.

Duan, X., Yan, Y., Li, R., Deng, M., Hu, D. & Peng, L. 2021. Seasonal variations, source apportionment, and health risk assessment of trace metals in PM2.5 in the typical industrial city of Changzhi, China. Atmospheric Pollution Research 12(1): 365-374.

Ebenstein, A., Fan, M., Greenstone, M., He, G. & Zhou, M. 2017. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proceedings of the National Academy of Sciences of the United States of America 114(39): 10384-10389.

EIA. 2020. Electricity explained. https://www.eia.gov/​energyexplained/​electricity/​electricity-and-the-environment.php (Accessed on 22 December 2023).

Fomba, K.W., van Pinxteren, D., Müller, K., Spindler, G. & Herrmann, H. 2018. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment 176: 60-70.

González, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L.G., Askar, K.A., Kharissov, B.I., Villarreal Chiu, J.F. & Alfaro Barbosa, J.M. 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmospheric Research 196: 8-22.

Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., Yang, W., Zhang, S. & Xie, S. 2018. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmospheric Research 213: 550-561.

IARC. 2022. List of Classifications – IARC monographs on the identification of carcinogenic hazards to humans https://monographs.iarc.who.int/list-of-classifications (Accessed on 13 September 2022).

International Union of Pure and Applied Chemistry (IUPAC). 2016. Glossary of terms used in extraction (IUPAC Recommendations 2016). Pure and Applied Chemistry 88(6): 517-555.

Jain, S., Sharma, S.K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T.K., Gupta, A., Gupta, N.C. & Sharma, C. 2017. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research 24(17): 14637-14656.

Jamhari, A.A., Sahani, M., Latif, M.T., Chan, K.M., Tan, H.S., Khan, M.F. & Mohd Tahir, N. 2014. Concentration and source identification of Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment 86: 16-27.

Jeong, C-H., Wang, J.M., Hilker, N., Debosz, J., Sofowote, U., Su, Y., Noble, M., Healy, R.M., Munoz, T., Dabek-Zlotorzynska, E., Celo, V., White, L., Audette, C., Herod, D. & Evans, G.J. 2019. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment 198: 55-69.

Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B. & Klejnowski, K. 2020. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of The Total Environment 713: 136729.

Kapar Energy. 2022. Generating Facility. https://kaparenergy.com.my/generating-facility/ (Accessed on 14 July 2022).

Khan, M.F., Hirano, K. & Masunaga, S. 2010. Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmospheric Environment 44(21-22): 2646-2657.

Khan, M.F., Sulong, N.A., Latif, M.T., Nadzir, M.S.M., Amil, N., Hussain, D.F.M., Lee, V., Hosaini, P.N., Shaharom, S., Yusoff, N.A.Y.M., Hoque, H.M.S., Chung, J.X., Sahani, M., Mohd Tahir, N., Juneng, L., Maulud, K.N.A., Abdullah, S.M.S., Fujii, Y., Tohno, S. & Mizohata, A. 2016. Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research: Atmospheres 121(24): 14,589-14,611.

Kim, S., Kim, T.Y., Yi, S.M. & Heo, J. 2018. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of Environmental Management 214: 325-334.

Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A. & Courcot, D. 2017. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 181: 713-724.

Li, Y., Chang, M., Ding, S., Wang, S., Ni, D. & Hu, H. 2017. Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management. Journal of Environmental Management 196: 16-25.

Liu, J., Chen, Y., Chao, S., Cao, H., Zhang, A. & Yang, Y. 2018. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. The Science of the Total Environment 644: 20-30.

Liu, Y., Xing, J., Wang, S., Fu, X. & Zheng, H. 2018. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution 239: 544-553.

Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R.V., Brauer, M., Cohen, A., Jiang, J., Zhou, W., Hao, J., Frostad, J., Forouzanfar, M.H. & Burnett, R.T. 2017. Impacts of coal burning on ambient PM2.5 pollution in China. Atmospheric Chemistry and Physics 17(7): 4477-4491.

Mahey, S., Kumar, R., Sharma, M., Kumar, V. & Bhardwaj, R. 2020. A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences 2(7): 1279.

MIMA. 2021. The Prosperity of the Straits of Malacca as a Major Maritime Trade Route. https://​www.​mima.gov.my/news/the-prosperity-of-the-straits-of-malacca (Accessed on 5 July 2022).

Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M. & Fallahzadeh, H. 2018. Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment: An International Journal 24(8): 2070-2087.

Motesaddi Zarandi, S., Shahsavani, A., Khodagholi, F. & Fakhri, Y. 2019. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM2.5 ambient air, Tehran, Iran. Environmental Geochemistry and Health 41(3): 1473-1487.

National Research Council. 2004. Review of the Army's Technical Guides on Assessing and Managing Chemical Hazards to Deployed Personnel. Washington: The National Academies Press. https://doi.org/10.17226/10974

Nuran Ercal, B.S.P., Hande Gurer-Orhan, B.S.P. & Nukhet Aykin-Burns, B.S.P. 2001. Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry 1(6): 529-539.

Park, J., Park, E.H., Schauer, J.J., Yi, S-M. & Heo, J. 2018. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea. Environment International 117: 276-283.

Peng, X., Shi, G., Liu, G., Xu, J., Tian, Y., Zhang, Y., Feng, Y. & Russell, A.G. 2017. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environmental Pollution 221: 335-342.

Roper, C., Nguyen, T.B., Rohr, J.M., Krishnakumar, M.S., Simpson, C.D., Paulsen, M.G., Fruin, S.A., Sioutas, C. & Geller, M.D. 2019. PM2.5filter extraction methods: Implications for chemical and toxicological analyses. Environmental Science & Technology 53(24): 14575-14585.

Singh, N., Murari, V., Kumar, M., Barman, S.C. & Banerjee, T. 2017. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environmental Pollution 223: 121-136.

Song, Y., Zhang, Y., Feng, L., Chan, C.K. & Zheng, M. 2006. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment 372(1): 278-286.

Tang, X., Chen, X. & Tian, Y. 2017. Chemical composition and source apportionment of PM2.5 - a case study from one-year continuous sampling in the Chang-Zhu-Tan urban agglomeration. Atmospheric Pollution Research 8(5): 885-899.

Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J. & Hsu, S.C. 2014. PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmospheric Chemistry and Physics 14(16): 8679-8699.

Uberoi, M. & Shadman, F. 1991. High-temperature removal of cadmium compounds using solid sorbents. Environmental Science & Technology 25(7): 1285-1289.

United Nations. 2023. The 17 Goals. https://sdgs.un.org/goals (Accessed on 4 January 2023).

U.S. Environmental Protection Agency. 2016. Validation and Peer Review of U.S. Environmental Protection Agency Chemical Methods of Analysis. Washington, DC: U.S. Environmental Protection Agency.

US EPA. 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). https://semspub.epa.gov/work/HQ/140530.pdf (Accessed on 22 December 2023).

US EPA. 1999. Determination of metals in ambient particulate matter using inductively coupled plasma (ICP) spectroscopy. https://www.epa.gov/sites/default/files/2019-11/documents/mthd-3-4.pdf (Accessed on 22 December 2023).

US EPA. 1989. Risk assessment guidance for superfund Volume I human health evaluation manual (Part A). https://​www.​epa.gov/​sites/default/files/2015-09/documents/​rags_a.​pdf (Accessed on 22 December 2023).

Valko, M., Morris, H. & Cronin, M. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12(10): 1161-1208.

Vidal, M., Moreno-Jiménez, A., Madrid, Y. & Cámara, C. 2017. in vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. Talanta 165: 658-665.

Zhong, C., Yang, Z., Jiang, W., Hu, B., Hou, Q., Yu, T. & Li, J. 2016. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone. Science of The Total Environment 573: 1519-1526.

 

*Pengarang untuk surat-menyurat; email: nfadilah@ukm.edu.my

 

 

 

 

 

 

 

 

           

sebelumnya